Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 366(6463)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624182

RESUMO

Bastin et al's estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.


Assuntos
Solo , Árvores , Carbono , Sequestro de Carbono , Mudança Climática
3.
Trends Plant Sci ; 24(2): 121-129, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472068

RESUMO

An acute imbalance between human population and food production is projected, partially due to increasing resource scarcity; dietary shifts and the current course of technology alone will not soon solve the problem. Natural ecosystems, typically characterized by high species richness and perennial growth habit, have solved many of the resource-acquisition problems faced by crops, making nature a likely source of insights for potential application in commercial agriculture. Further research on undomesticated plants and natural ecosystems, and the adaptations that enable them to meet their needs for N, P, and water, could change the face of commercial food production, including on marginal lands.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura , Produção Agrícola , Produtos Agrícolas , Humanos
5.
Nat Ecol Evol ; 1(11): 1639-1642, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28970481

RESUMO

The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.


Assuntos
Biodiversidade , Florestas , Pradaria , Ecossistema
6.
Oecologia ; 167(4): 1127-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21691855

RESUMO

An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions.


Assuntos
Heliconiaceae/metabolismo , Nitratos/metabolismo , Solo/química , Oligoelementos/metabolismo , Árvores/metabolismo , Biota , Costa Rica , Ecossistema , Heliconiaceae/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estações do Ano , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Clima Tropical , Água/metabolismo
8.
Rev. biol. trop ; 56(4): 1947-1957, Dec. 2008. graf
Artigo em Inglês | LILACS | ID: lil-637789

RESUMO

We examined soil water use patterns of four model plant associations established in the North Caribbean lowlands of Costa Rica by comparing the stable hydrogen isotope composition, δD, in xylem sap and in soil water at different depths, under rainy and dry conditions. Four 5-year-old model plant associations composed of 2 tree species (Hyeronima alchorneoides and Cedrela odorata) having different architecture and phenology were studied. Average tree height was 8.9 and 7.6 m, respectively. Each tree species was grown in monoculture and in polyculture with 2 perennial monocotyledons (Euterpe oleracea and Heliconia imbricata). Maximum rooting depth at the time of δD determination was ~ 2 m for almost all species. Most roots of all species were concentrated in the upper soil layers. Stomatal conductance to water vapor (gS) was higher in the deciduous C. odorata than in the evergreen H. alchorneoides; within each species, gS did not differ when the trees were grown in mono or in polyculture. During the rainy season, gradients in soil water δD were not observed. Average rainy season xylem sap δD did not differ among members of the plant combinations tested (-30 ‰), and was more similar to δD values of shallow soil water. Under dry conditions, volumetric soil water content declined from 50 to ~ 35%, and modest gradients in soil water δD were observed. xylem sap δD obtained during dry conditions was significantly lower than rainy season values. xylem sap δD of plants growing in the four associations varied between -9 and -22‰, indicating that shallow water was predominantly absorbed during the dry period too. Differences in xylem sap δD of trees and monocots were also detected, but no significant patterns emerged. The results suggest that: a) the plant associations examined extracted water predominantly from shallow soil layers (<1 m), b) the natural isotopic variation in soil and plant water at the study site was low, and c) the plant mixes obtain water from more than a single soil layer simultaneously. Temporal factors were important in determining the competition and complementary relations observed among the trees and the perennial monocots. Under the prevailing environmental conditions, water use in these plant associations was determined largely by species-specific attributes such as biomass allocation to fine roots, phenology, and canopy architecture, and to a lesser extent by water limitations. Rev. Biol. Trop. 56 (4): 1947-1957. Epub 2008 December 12.


Examinamos los patrones de uso de agua del suelo de cuatro asociaciones vegetales establecidas en el Caribe norte de Costa Rica, comparando la composición isotópica del hidrógeno, δD, en la savia del xilema y en el agua del suelo en condiciones lluviosas y secas. Estudiamos cuatro asociaciones de cinco años de edad compuestas por dos árboles (Hyeronima alchorneoides y Cedrela odorata) con diferente arquitectura y fenología, cultivados en mono y policultivo con dos monocotiledóneas perennes (Euterpe oleracea y Heliconia imbricata). Las excavaciones mostraron que la profundidad máxima de las raíces fue de 2 m para casi todas las especies, y que la mayor densidad de raíces se encontraba en la superficie del suelo. La conductividad estomática (gS) fue mayor en el árbol caducifolio (C. odorata) que en el perennifolio (H. alchorneoides); dentro de cada especie, gS no difirió cuando los árboles fueron cultivados en mono o en policultivo. Los resultados sugieren que: a) las asociaciones examinadas extrajeron agua predominantemente de las capas superficiales del suelo (<1 m), b) la variación natural en el acceso al agua del suelo por parte de las especies, y en las propiedades del suelo, fue baja, y c) las combinaciones de plantas obtuvieron agua de varias capas del perfil del suelo simultáneamente. Los factores relacionados con el tiempo fueron importantes en la determinación de las relaciones de competencia y complementariedad observadas entre los árboles y las monocotiledóneas perennes. En las condiciones ambientales prevalecientes, el uso del agua por parte de estas asociaciones de plantas fue determinado más por atributos, como la asignación de biomasa a las raíces finas, la fenología, y las propiedades del dosel, que por limitaciones en la disponibilidad de agua.


Assuntos
Arecaceae/fisiologia , Cedrela/fisiologia , Heliconiaceae/fisiologia , Água/metabolismo , Costa Rica , Isótopos/análise , Modelos Biológicos , Estações do Ano , Solo/análise , Água/química
9.
Proc Natl Acad Sci U S A ; 105(48): 18836-41, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19022907

RESUMO

Chance events such as seed dispersal determine the potential composition of plant communities, but the eventual assemblage is determined in large part by subsequent interactions among species. Postcolonization sorting also affects the ultimate composition of communities assembled by people for restoration, horticulture, or conservation. Thus, knowledge of the mechanisms controlling interspecific interactions in plant communities is important for explaining patterns observed in nature and predicting success or failure of utilitarian combinations. Relationships among species, especially those from studies of biological diversity and ecosystem functioning, are largely based on studies of short-lived, temperate-zone plants. Extrapolation to perennial plants in the humid tropics is risky because functional relationships among large-stature species change with time. Shifts in competitive relationships among 3 life forms--trees, palms, and perennial herbs--occurred during 13 yr in experimental tropical ecosystems. In 2 cases the novel competitive mechanism responsible for the shift was reduction in crown volume, and therefore light-capturing capability, of overtopping deciduous trees by intrusive growth from below a palm. In a third case, complementary resource use developed between 2 evergreen life forms (overstory tree and palm), probably because of differential nutrient acquisition. Species-level traits and adequate time for shifts in interspecific relationships to emerge are crucial for predicting community trajectories.


Assuntos
Ecossistema , Alimentos , Desenvolvimento Vegetal , Luz Solar , Clima Tropical , Biodiversidade , Biomassa , Costa Rica , Meio Ambiente , Plantas/metabolismo
10.
Rev Biol Trop ; 56(4): 1947-57, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19419093

RESUMO

We examined soil water use patterns of four model plant associations established in the North Caribbean lowlands of Costa Rica by comparing the stable hydrogen isotope composition, deltaD, in xylem sap and in soil water at different depths, under rainy and dry conditions. Four 5-year-old model plant associations composed of 2 tree species (Hyeronima alchorneoides and Cedrela odorata) having different architecture and phenology were studied. Average tree height was 8.9 and 7.6 m, respectively. Each tree species was grown in monoculture and in polyculture with 2 perennial monocotyledons (Euterpe oleracea and Heliconia imbricata). Maximum rooting depth at the time of 6D determination was approximately 2 m for almost all species. Most roots of all species were concentrated in the upper soil layers. Stomatal conductance to water vapor (gS) was higher in the deciduous C. odorata than in the evergreen H. alchorneoides; within each species, g, did not differ when the trees were grown in mono or in polyculture. During the rainy season, gradients in soil water 6D were not observed. Average rainy season xylem sap deltaD did not differ among members of the plant combinations tested (-30% per thousand), and was more similar to deltaD values of shallow soil water. Under dry conditions, volumetric soil water content declined from 50 to approximately 35%, and modest gradients in soil water deltaD were observed. Xylem sap deltaD obtained during dry conditions was significantly lower than rainy season values. Xylem sap deltaD of plants growing in the four associations varied between -9 and -22% per hundred, indicating that shallow water was predominantly absorbed during the dry period too. Differences in xylem sap deltaD of trees and monocots were also detected, but no significant patterns emerged. The results suggest that: (a) the plant associations examined extracted water predominantly from shallow soil layers (<1 m), (b) the natural isotopic variation in soil and plant water at the study site was low, and (c) the plant mixes obtain water from more than a single soil layer simultaneously. Temporal factors were important in determining the competition and complementary relations observed among the trees and the perennial monocots. Under the prevailing environmental conditions, water use in these plant associations was determined largely by species-specific attributes such as biomass allocation to fine roots, phenology, and canopy architecture, and to a lesser extent by water limitations.


Assuntos
Arecaceae/fisiologia , Cedrela/fisiologia , Heliconiaceae/fisiologia , Água/metabolismo , Costa Rica , Isótopos/análise , Modelos Biológicos , Estações do Ano , Solo/análise , Água/química
11.
Ecol Appl ; 16(2): 490-502, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711039

RESUMO

Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting and replanting or by the phenological traits of the species selected or combined, subject N supplies to leaching loss.


Assuntos
Cedrela , Cordia , Euphorbiaceae , Agricultura Florestal/métodos , Nitrogênio/análise , Biodiversidade , Costa Rica , Nitratos/análise , Nitratos/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/metabolismo , Solo/análise , Clima Tropical
12.
New Phytol ; 167(1): 219-28, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15948844

RESUMO

We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.


Assuntos
Biodiversidade , Micorrizas/classificação , Micorrizas/fisiologia , Árvores/fisiologia , Clima Tropical , Demografia , Árvores/microbiologia
13.
Am J Bot ; 91(4): 582-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21653414

RESUMO

The tropical emergent tree Hyeronima alchorneoides has large decreases in leaf size with tree age: 1200 cm(2) at 1 yr, 900 cm(2) at 3 yr, 200 cm(2) at 11 yr, and 80 cm(2) in old (>30 yr) individuals. We tracked leaf growth and physiological attributes on trees of three different ages (1, 3, and 11 yr) to determine the developmental basis and functional consequences of this variation. Leaves on young trees grew faster and sustained maximum rates of leaf expansion longer than leaves on older trees. Leaf mass per area (LMA) did not differ among age classes. Maximum photosynthetic rates reflected differences in leaf nitrogen concentration, in which leaves from the lower crown of younger trees outperformed those at a comparable crown position in older trees. One-year-old trees had the lowest stomatal conductance and the greatest instantaneous water use efficiency. Ontogenetic plasticity in mature leaf size, structure, and physiology may be a balance between the advantages conferred by rapid height growth when trees are young and the benefits derived from producing branches that increase light harvesting ability as trees reach the canopy.

14.
Oecologia ; 137(4): 587-90, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14513351

RESUMO

We describe an ontogenetic shift in nitrogen (N) isotopic values in two rosette-forming epiphytic bromeliads. Leaf tissue N isotope values of small individuals of two bromeliad species (mean -6.2 per thousand ) differed from those of large individuals within each species (mean -0.5 per thousand ). Using references for potential N sources, we calculated the relative contribution of autochthonous (soil-derived through leaf litter) and allochthonous (atmospheric deposition) N with a two-member mixing model. Atmospheric sources contributed as much as 77-80% of the N in small individuals, whereas soil-derived N contributed 64-72% (conservative reference value) to 100% (less conservative reference value) of leaf tissue N in large plants. Shifts in N source with increasing plant size may be important aspects of rainforest complexity, an understudied aspect of ecosystem diversity.


Assuntos
Bromeliaceae/fisiologia , Nitrogênio/metabolismo , Bromeliaceae/crescimento & desenvolvimento , Ecossistema , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/farmacocinética , Folhas de Planta/química , Solo , Distribuição Tecidual , Clima Tropical
15.
Ecol Appl ; 1(3): 289-302, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27755770

RESUMO

For 5 yr we monitored the fertility of a volcanic-ash derived Inceptisol at a site in the humid tropics of Costa Rica. After forest felling and burning, we established four treatments in a randomized block design with six blocks: a sequence of monocultures (two crops of maize [Zea mays] followed by cassava [Manihot esculenta], then the tree species Cordia alliodora), successional vegetation, a mimic of successional vegetation that was physiognomically similar to the model but shared no species with it, and a species-enriched version of successional vegetation. In addition, one plot was maintained free of vegetation. Species-rich successional vegetation was effective at maintaining soil fertility, although we observed general trends of soil-nutrient decline beneath all treatments, presumably because of plant uptake. It proved possible to imitate the fertility-maintaining characteristics of successional vegetation by creating an equally species-rich community of different floristic composition, but the maintenance of fertility was not enhanced by further species enrichment. Successive peaks of nitrate-nitrogen in soil solution, extractable phosphorus, and extractable potassium occurred during the 1st yr, perhaps driven by an early increment of organic matter from postburn debris and roots. Organic matter, total nitrogen, and extractable sulfur were remarkably stable during the 5-yr period. Depletions of cations, decreases in effective cation exchange capacity (CECe ), and increases in acid saturation were related to treatment in the following order: bare soil > monocultures > the three diverse, successional communities. In the bare-soil plot, fertility decreased dramatically: there was a net loss of exchangeable cations and inorganic nitrogen, the phosphorus-fixation capacity increased, and acid saturation reached a potentially toxic 86%. At the start of the study, three of the blocks had soil with lower pH, lower CECe , and higher acid saturation. During the study this less fertile soil lost proportionally more cations and increased more in acid saturation and phosphorus-fixation capacity. The less fertile soil under monocultures proved exceptionally vulnerable to loss of fertility; after 5 yr under monocultures, for example, acid saturation reached 38% in the more fertile soil and 75% in the less fertile soil. In the species-rich communities, however, changes in soil fertility were far less marked.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...